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ABSTRACT: A quick calculation to see the effect of a transmission line that

connects the load resistor to the Einzel lens. In this treatment, a capacitor with

a small capacitance is used to model the Einzel lens. If the load resistor is not

equal to the impedance of the transmission line, there are two surprising results:

(i) the time constant from each reflection is Z0CE rather than RCE . Here Z0 is the

impedance of the transmission line, R is the load resistor and CE is the capacitance

of the Einzel lens. (ii) for a very long cable, the decay rate of the voltage on the

Einzel lens when it is turned off instantaneously depends on both the length of the

transmission line and the reflection coefficient and is independent of CE .



THEORY

We assume that the Einzel lens can be modelled as a capacitor CE . We will solve the

system shown in Figure 1 for a current source Is(t) which we assume is representable in

Fourier space. If we work in Fourier space, the initial conditions are defined at t = −∞
and in this formalism it is the superposition of steady state solutions for current sources

which have sinusoidal outputs. Therefore, only boundary conditions are specified here.
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Figure 1 This is the steady state representation of the system.
Note that v is pointing from z = ` to z = 0, this means that v < 0.

The equations at the transmission line boundaries are

I(0, t) =
V (0, t)

R

I(`, t) = Is(t)− CE V̇ (`, t)





(1)

because IE(t) = −CE V̇ (`, t).

The transmission line model satisfies the wave equation
(

∂2

∂z2 −
1
v2

∂2

∂t2

){
I(z, t)
V (z, t)

}
= 0 (2)
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where v = −1/
√

LC. Note: the negative sign comes from the way we have set up the

system because the source is pushing current from z = ` to z = 0. It is easy to show that

the relationship between I and V is
∂V

∂z
= −L

∂I

∂t
∂I

∂z
= −C

∂V

∂t





(3)

We will define the Fourier transform pair to be

f̃(z, ω) =
∫ ∞

−∞
dt f(z, t)e−iωt

f(z, t) =
1
2π

∫ ∞

−∞
dω f̃(z, ω)eiωt





(4)

Therefore, the transmission line differential equation in Fourier space is
(

∂2

∂z2 + k2
){

Ĩ(z, ω)
Ṽ (z, ω)

}
= 0 (5)

where k2 = ω2/v2.

The general solutions to the wave equation (2) are

Ṽ (z, ω) = A(ω)eikz + B(ω)e−ikz

Ĩ(z, ω) =
1
Z0

[
B(ω)e−ikz −A(ω)eikz

]





(6)

where Z0 =
√

L/C.

The boundary conditions from (1) in Fourier space are

Ĩ(0, ω) =
Ṽ (0, ω)

R

Ĩ(`, ω) = Ĩs(ω)− iωCE Ṽ (`, ω)

= Ĩs(ω)− Ṽ (`, ω)
ZE(ω)





(7)

where ZE(ω) = 1/iωCE .

When we substitute (6) into (7), we get

A

(
1
R

+
1
Z0

)
+ B

(
1
R
− 1

Z0

)
= 0

A

(
1
Z0

− 1
ZE

)
eik` −B

(
1
Z0

+
1

ZE

)
e−ik` = −Ĩs





(8)
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which can be solved for A and B in terms of determinants

A =

∣∣∣∣
1/R− 1/Z0 0

−(1/Z0 + 1/ZE)e−ik` Ĩs

∣∣∣∣
∣∣∣∣

1/R + 1/Z0 1/R− 1/Z0
(1/Z0 − 1/ZE)eik` −(1/Z0 + 1/ZE)e−ik`

∣∣∣∣

B = −

∣∣∣∣
1/R + 1/Z0 0

(1/Z0 − 1/ZE)eik` Ĩs

∣∣∣∣
∣∣∣∣

1/R + 1/Z0 1/R− 1/Z0
(1/Z0 − 1/ZE)eik` −(1/Z0 + 1/ZE)e−ik`

∣∣∣∣





(9)

When we substitute this into (6), we have†

Ṽ (z, ω) =
Ĩs(ω)
D(z, ω)

[(
1
R
− 1

Z0

)
eikz −

(
1
R

+
1
Z0

)
e−ikz

]
(10)

where D(`, ω) =
∣∣∣∣

1/R + 1/Z0 1/R− 1/Z0
(1/Z0 − 1/ZE)eik` −(1/Z0 + 1/ZE)e−ik`

∣∣∣∣.

In particular, we are interested in how the Einzel lens will behave. Therefore, at z = `,

we have

Ṽ (`, ω) =
Ĩs(ω)
D(`, ω)

[(
1
R
− 1

Z0

)
eik` −

(
1
R

+
1
Z0

)
e−ik`

]
(11)

Is(t) = I0(1 − u(t))

We can write Is(t) so that it is “on” from −∞ < t < 0− and “off” for t > 0+.

Is(t) = I0

(
1− u(t)

)
(12)

where I0 is the peak current and u(t) is the Heaviside operator. The system is shown in

Figure 2. Its Fourier transform is

Ĩs(ω) =
i

ω
+ πδ(ω) (13)

† And similarly for Ĩ when the solutions are substituted into (6). But we are more interested
in voltage for now.
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Figure 2 The system is at steady state at t = 0−. At t = 0+, the
switch S1 is thrown open and the capacitor starts discharging into the
load resistor.

where δ(x) is the Dirac δ-function.

Therefore, the voltage on the Einzel lens is

Ṽ (`, ω) =
I0

D(`, ω)

[
i

ω
+ πδ(ω)

] [(
1
R
− 1

Z0

)
eik` −

(
1
R

+
1
Z0

)
e−ik`

]
(14)

Is(t) = I0(1 − u(t)): check

There is an analytic solution when ` = 0, i.e. no transmission line. We expect the

voltage across the Einzel lens to be V (t) = VEe−t/RCE . This is trivial to prove. Using

Kirchoff’s equations with the sign convention of positive current direction I shown in
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Figure 3 and recalling that the voltage drop across a resistor is always negative, we have

−IR + Q/CE = 0 ⇒ Q/CE = IR

.˙. Q/CE = −Q̇R



 (15)

because I = −Q̇ where the negative sign comes from the loss of charge over time. Hence,

dQ

Q
= − dt

RCE
(16)

and so

Q = Q(0)e−t/RCE (17)

The voltage across the resistor is

V (t) = IRR = −IER = −Q̇R =
Q(0)
CE

e−t/RCE = VEe−t/RCE (18)

and the voltage across the capacitor (or Einzel lens) is

V (t) =
Q(0)
CE

e−t/RCE = VEe−t/RCE (19)

which is the same as across the resistor (17) as expected.

R C
E

+

I

+

Figure 3 The circuit used for checking (14) for ` = 0. The con-
vention we have chosen is that the current I flowing in the counter-
clockwise direction is positive.
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Now, we have to check that Ṽ (0, s) from (11) gives the same answer as (14). In fact

when ` = 0, we get

Ṽ (0, ω) =
iI0R

ω
(
1 + iωRCE

) +
πI0Rδ(ω)

1 + iωRCE
(20)

And when we inverse Fourier transform (20), we get

V (0, t) = VE

[
1 + u(t)

(
e−t/RCE − 1

)]
(21)

where VE = I0R. Therefore, when t ≥ 0, we get

V (0, t) = VEe−t/RC (22)

which is identical to (19). Note: at t = 0, u(0) is undefined, but (e−t/RCE − 1)|t=0 = 0.

Special Case 1: R = Z0

The first special case which we will consider is when R = Z0. When we substitute this

into (14), we have

Ṽ (`, s) = I0R

(
ZE

R + ZE

)[
i

ω
+ πδ(ω)

]
(23)

which is independent of `.

The inverse Fourier transform of (23) is

VB(`, t) = VE

[
1 + u(t)

(
e−t/RCE − 1

)]
(24)

where we have made limω→∞ ZE/(R+ZE) = 1. This is, again, what we expect: there are

no reflections when the load resistor matches the impedance of the cable.
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PERFORMING FT−1[Ṽ (`, ω)]

We have to apply a few tricks in order to FT−1[Ṽ (`, ω)] because it cannot be done

directly. Let us define new functions F̃ (`, ω) and D̃(`, ω) to be

F̃ (`, ω) = I0

[
i

ω
+ πδ(ω)

] [(
1
R
− 1

Z0

)
eik` −

(
1
R

+
1
Z0

)
e−ik`

]

D̃(`, ω) =
1

D(`, ω)





(25)

(14) becomes

Ṽ (`, ω) = F̃ (`, ω)D̃(`, ω) (26)

Now F̃ (`, ω) is invertible by using the following relationships

FT
[
1− u(t)

]
=

i

ω
+ πδ(ω)

FT
[
δ(t± `/v)

]
= e±iω`/v

FT
[
F (t) ∗G(t)

]
= F̃ (ω)G̃(ω)





(27)

Therefore,

F (`, t) = −I0

[
2
Z0

+
(

1
R
− 1

Z0

)
u(t + `/v)−

(
1
R

+
1
Z0

)
u(t− `/v)

]
(28)

We cannot invert D̃(ω) directly and so we need to expand it and do it term by term

in powers of a dimensionless variable to be defined below. Rather than lugging the matrix

entries of D around, let us define the following new variables a1, a2, b1, b2 for the entries

D(`, ω) =
∣∣∣∣

1/R + 1/Z0 1/R− 1/Z0
(1/Z0 − 1/ZE)eik` −(1/Z0 + 1/ZE)e−ik`

∣∣∣∣ ≡
∣∣∣∣

a1 a2
b1e

ik` b2e
−ik`

∣∣∣∣ (29)

Therefore,

D̃(`, ω) =
1∣∣∣∣

a1 a2
b1e

ik` b2e
−ik`

∣∣∣∣
=

eik`

a1b2

(
1− a2b1

a1b2
ei2k`

)
(30)
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Note that |a2b1/a1b2| < 1 because
∣∣∣∣
a2b1
a1b2

∣∣∣∣ =
∣∣∣∣

(R− Z0)(i + ωZ0CE)
(R + Z0)(−i + ωZ0CE)

∣∣∣∣

=
∣∣∣∣
R− Z0
R + Z0

∣∣∣∣ < 1 because | − i + ωZ0CE | = |i + ωZ0CE |
(31)

And we can conveniently identify
∣∣∣R−Z0
R+Z0

∣∣∣ as the reflection coefficient.

If we define

ρ(ω) =
a2b1
a1b2

(32)

then (30) can be expanded in terms of ρei2k`

D̃(`, ω) =
eik`

a1b2
(
1− ρ(ω)ei2k`

)

=
eik`

a1b2

[
1 + ρ(ω)ei2k` + ρ(ω)2ei4k` + . . .

]

≡ D̃0(`, ω) + D̃1(`, ω) + D̃2(`, ω) + . . .





(33)

because the series is convergent for |ρ(ω)| < 1. It is clear that the rhs has reflections

because of the ei(2n+1)k` terms where n ∈ Z+.

Now, we can inverse Fourier transform D̃(ω) term by term on the rhs of (33)

D0(`, t) = −e−t/Z0CEe−(`/v)(1/Z0CE)RZ0u(t + `/v)
CE(R + Z0)

D1(`, t) =
R(R− Z0)Z2

0
(R + Z0)2

{
−e−t/Z0CEe−3(`/v)(1/Z0CE)(t + 3`/v)u(t + 3`/v)

Z2
0C2

E

+
e−t/Z0CEe−3(`/v)(1/Z0CE))

vZ2
0C2

E

[
3Z0CE`δ

(
t +

3`

v

)
+ Z0CEvtδ

(
t +

3`

v

)

+
(
− 3`− vt + vZ0CE

)
u

(
t +

3`

v

)]}

D2(`, t) = . . .





(34)

Note: terms like u(t+n`/v) where n ∈ Z+ in the above equations seem to give non-causal

solutions. However, we recall that v < 0 because of the way the system was set up (See

Figure 1) and so, in fact, each equation is causal.
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Since each D̃n can be Fourier inverted, we can easily calculate the V (`, t) term by term

by using (28) and (34) because
V (`, t) = F (`, t) ∗D0(t) + F (`, t) ∗D1(`, t) + . . .

≡ V0(`, t) + V1(`, t) + . . .



 (35)

We will use (35) for numerical inversion in the Numerical Inversion of Ṽ section.

As an example, we can write down V0

V0(`, t) = − I0Z0
R + Z0

e−t/Z0CE

{(
et/Z0CE − 1

)
(R + Z0)u(t)

+ (Z0 −R)e−2(`/v)(1/Z0CE)u

(
t +

2`

v

)
+

+et/CEZ0

[
−2R + (R− Z0)u

(
t +

2`

v

)]}





(36)

The other terms V1...∞ are too onerous to write down and we will let Mathematica take

care of these terms.

More Observations

The first observation of (36) is that the reflection happens at t = 2`/v. This is expected

because a signal must travel down the transmission line and then reflect back again, which

means the first reflection can only occur at t = 2`/v. We expect that for V1 will have

reflections occur at t = 4`/v. In fact, the Mathematica solutions show that reflections

occur at every t = 2n(`/v), where n ∈ Z.

The second observation is that the time constant for each reflection is Z0CE and not

RCE . This is an unexpected result for us because an ideal transmission line does not have

any resistance! This result implies that the L’s and C’s of a transmission line behave like

a resistor in this type of system.

The third observation is that it is not obvious that the sum of Vn will for ` = 0, i.e. no

reflections, has a time constant of RCE . We will prove that it does indeed have a time

constant RCE in the section Special Case A: ` = 0.
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Special Case A: ` = 0

We can check that (33) makes sense by considering the special case ` = 0. When we

substitute this value into (28), we have

F (0, t) = −2I0
Z0

[
1− u(t)

]
(37)

and from (30)

D̃(ω) = − 1
a2b1

× 1
1− a1b2/a2b1

= − 1
a2b1 − a1b2

=
iRZ0

2(−i + ωRCE)

(38)

which has an inverse Fourier transform

D(t) = −1
2

(
Z0
CE

)
e−t/RCEu(t) (39)

Therefore, the convolution is give VA(0, t) and is

VA(0, t) = F (0, t) ∗D(t) =
∫ ∞

−∞
dτ

(
−2I0

Z0

[
1− u(t)

])(
−1

2

(
Z0
CE

)
e−(t−τ)/RCEu(t− τ)

)

= VE

[
1 +

(
e−t/RCE − 1

)
u(t)

]

(40)

where VE = I0R and (40) is identical to (19) for t > 0, which is what we expect.

Special Case B: Numerical Inversion of Ṽ : Z0CE À `/|v|

Let us consider the case when the time constant Z0CE is much greater than the

temporal length of the transmission line `/|v|. We expect the temporal behaviour of

V (t) to be nearly the same as that for ` = 0. In this example, we have set ` = 0.03 m

and so (Z0CE = 5 ns) À (`/|v| = 0.15 ns). The plots of V0...11 are shown in Figure 4. We

notice the slow convergence of
∑

Vn(t) and even after 12 terms, it is still insufficient to

reproduce Vref(t) = VEe−t/RCE . We cannot use more terms because Mathematica becomes
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Figure 4 These plots are for (Z0CE = 5 ns) ¿ (`/|v| = 0.15 ns).
The top left plot shows V0(t) to V11(t) which clearly shows reflections.
The bottom two graphs show V0(t) and V11(t) explicitly. The top right
graph shows the

∑11
n=0 Vn(t) compared to the reference VE×e−t/RCE .

excruciatingly slow in calculating Vn for n ≥ 12. Despite this, we will assume and expect

that the infinite sum of Vn does indeed converge to Vref .

Special Case C: Numerical Inversion of Ṽ : Z0CE ¿ `/|v|

The special case which we will consider here is when the Z0CE time constant is shorter

than the length of the transmission line, i.e. Z0CE ¿ `/|v|. In this case, the temporal

length of the transmission line `/|v| is a lot longer than the time constant Z0CE . In this

example, we have set ` = 5 m and so (Z0CE = 5 ns) < (`/|v| = 25) ns) and is sufficient

to illustrate this case. The plots are shown in Figure 5. Again, we were unable to sum Vn

above n = 7 because of large numerical errors. However, the reflections are clearly visible
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in both V0 and V5. The slope of the overall curve is clearly much slower than Vref which

is not surprising.

Figure 5 These plots are for (Z0CE = 5 ns) < (`/|v| = 25 ns).
The top left plot shows V0(t) to V7(t) which clearly shows very strong
reflections. The bottom two graphs show V0(t) and V5(t) explicitly.
The top right graph shows the

∑7
n=0 Vn(t) compared to the reference

VE × e−t/RCE .

Table 1 Parameters used for the numerical inversion of Ṽ

Parameter Value Comments
CE 100 pF Einzel lens capacitance

Z0 50Ω impedance of coaxial transmission line

R 500Ω load resistor
v −0.67c group velocity of transmission line

VE 1 V initial steady state voltage

I0 VE/R R is defined in each special case
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Ansatz for Z0CE ¿ `/|v|

It is clear from Figure 5 that we can come up with an ansatz for the behaviour of

V (t) for `/|v| À Z0CE . The spacing of each reflection is t = 2n`/v and the relationship

between the amplitude of after each reflection is

Vn = ΓVn−1 (41)

where Γ = (R − Z0)/(R + Z0) is the reflection coefficient. In this ansatz we must have

R > Z0.

-0.4 -0.2 0.0 0.2 0.4
0.0
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Time HΜsL
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Ht
L

R = 500W, { = 5 m

WHtL corrected

WHtL

Ún=0
7 Vn

Figure 6 The ansatz solution W (t) compared to
∑7

n=0 Vn(t) from
the section Special Case C . It is clear that the ansatz works quite
well.

Therefore, the ansatz is

W (t) = VE

∞∑

n=0

[
u

(
t− 2(n− 1)`

|v|
)
− u

(
t− 2n`

|v|
)]

Γn for t ≥ 0. (42)
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It is interesting to note that (42) is independent of CE because in this ansatz it is assumed

that the time constant ZECE = 0.

In Figure 6, we have plotted the ansatz solution W (t) together with
∑7

n=0 Vn(t) for

` = 5 m and R = 500Ω from Special Case C . We have to subtract a vertical offset from

W (t) to better compare to
∑7

n=0 Vn(t) because of the problems with summing Vn which

was previously discussed.

CONCLUSION

We have shown that there are reflections if R 6= Z0. These reflections are minimised if

`/v ¿ Z0CE and they manifest themselves very clearly if `/v À Z0CE . The two surprising

results are:

(i) the correct comparison for the checking whether the length `/v is long or short is

to Z0CE and not RCE .

(ii) And even more surprising is that the decay rate for `/v À Z0CE , is essentially

independent of CE and depends only on the length of the transmission line and

the reflection coefficient.

Of course, a similar calculation can be done for the case when the chopper goes from

an “off” state to an “on” state. The results should be very similar to the case we have

already considered here.

15


